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An SMT-based Approach to Secure State Estimation
Under Sensor and Actuator Attacks

Mehrdad Showkatbakhsh, Yasser Shoukry, Robert H. Chen, Suhas Diggavi and Paulo Tabuada

Abstract— This paper addresses the problem of state estima-
tion of a linear time-invariant system when some of the sensors
or/and actuators are under adversarial attack. In our set-up, the
adversarial agent attacks a sensor (actuator) by manipulating
its measurement (input), and we impose no constraint on how
the measurements (inputs) are corrupted. We introduce the
notion of “sparse strong observability” to characterize systems
for which the state estimation is possible, given bounds on the
number of attacked sensors and actuators. Furthermore, we
develop a secure state estimator based on Satisfiability Modulo
Theory (SMT) solvers.

[. INTRODUCTION

Cyber-Physical Systems (CPSs) are characterized by the
tight interconnection of cyber and physical components.
Security of CPS is no longer restricted to the cyber domain,
and recent attacks such as the StuxNet malware [1] and the
security flaws reported on modern cars [2], [3] motivated the
recent interest in security of CPS by the control community,
(see for example, [4], [5], [6], [7] and references therein).

Several different security problems have been investigated
in the literature, e.g., denial-of-service [8], [9], [10], [11],
reply attack [12], man-in-the-middle [13], false data injection
[14] etc. In this paper, we investigate the problem of state
estimation when some of the sensors and actuators are under
adversarial attacks. In the rest of this paper, we broadly refer
to the problem of state estimation under adversarial attacks as
“secure state estimation”. Our attack model is quite general
and the adversary can alter sensors measurements and actua-
tors inputs arbitrarily, we do not impose any restriction on the
magnitude, statistical properties and temporal characteristics
of the adversarial signals throughout this work.

In [15], the problem of control and estimation under sensor
attack is investigated and the authors derived necessary and
sufficent conditions under which estimation and stabilization
are possible. Shoukry et. al. further refined this property and
called it “sparse observability” [16]. Chong et. al. indepen-
dently derived a similar condition in [17] for continuous-time
systems and called it “observability under attack”. Nakahira
et. al. relaxed the sparse observability condition to sparse
detectability [18]. Mishra et. al. investigated the noisy version
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of this problem and derived the optimal solution for Gaussian
noise [19]. In our set-up, the adversarial model not only
covers sensor attacks, but also includes actuator attacks.
Shoukry et. al. proposed a novel secure state estimator
using Satisfiability Modulo Theory (SMT) paradigm, called
IMHOTEP-SMT [20]. In this paper we address the more
general problem of sensor and actuator attacks and build an
SMT-based estimator secure against both type of attacks.

In another line of work, problem of secure state estimation
has been investigated when the model of the system is not
known exactly [21], [22]. Tiwari et. al. proposed a method
that does not rely on the model of the underlying system
and builds so-called “safety envelopes” as it receives attack-
free data [23]. Showkatbakhsh et. al. considered the model
identification under sensors attacks [24], [25]. In all of these
works, the adversarial power is limited to the sensors and all
actuators are assumed to be safe.

Fault tolerant and fault detection filters are closely related
to secure state estimation. The classical fault tolerant filters
can detect faults on actuators and sensors, however, they
are not adequate for the purpose of security. Some of these
filters assume a priori knowledge (statistical or temporal) of
the fault signals [26], an assumption that does not hold in
the secutiry framework. The classical fault detection filters
[27] do not guarantee identification of all possible adversarial
signals and zero-dynamics attacks remain stealthy. Therefore,
the state estimate is not guaranteed to be correct. In contrast,
the method proposed in this paper is guaranteed to construct
the correct estimate of the state despite attacks on sensors
and/or actuators. In a recent work [28], Harirchi et. al. pro-
posed a sound and complete fault detection approach using
techniques from model invalidation. The authors pursued a
worst-case scenario approach and therefore their framework
is suitable for security. However, necessary and sufficient
conditions for state estimation in a general adversarial setting
were not investigated in [28]. In this paper, we precisely
characterize the class of systems, by providing necessary
and sufficient conditions, for which state reconstruction is
possible despite sensor and/or actuator attacks.

In [29], the problem of attack detection and identification
is considered. The authors related the “undetectable” and
“unidentifiable” attacks to the zero-dynamics of the underly-
ing system. The proposed identification monitor consists of
a number of fault detection filters that grows exponentially
with the size of the attacks, and therefore hinders scalability.
In another work [30], the authors investigated detectibility
and identifiability of attacks in the presence of disturbances
and the concept of security index is generalized to dynamical



systems. The proposed method suffers from the problem of
scalability. In this paper, by leveraging the SMT paradigm
we design a state estimator that substantially outperforms the
brute-force approach.

Our contributions are as follows:

« By drawing inspiration from [15], [16], we introduce the
notion of “sparse strong observability” that generalizes
“sparse observability” to the scenario where both sen-
sors and actuators are susceptible to adversarial attacks.
We develop a secure state estimator by leveraging
the SMT paradigm, building on [20]. Furthermore, we
propose methods to improve the running time.

This paper is organized as follows. In Section II, we
precisely formulate the problem after introducing some no-
tation. Section IIT gives the main theoretical contribution
of this paper. In Section IV, we develop an SMT-based
estimator followed by a discussion on improving the running
time. Section IV ends with experimental results. Section V
concludes the paper. Proof deatils are given in [31] due to
the space constraint.

II. PROBLEM DEFINITION
A. Notation

We represent the sets of real, natural and binary num-
bers by R, N and B. Given a vector x € R" and a set
O C{l,...,n}, we use x| to denote the vector obtained from
x by removing all elements except those indexed by the set O.
Similarly, for a matrix C € R"*" we use C| (¢, 0,) to denote
the matrix obtained from C by eliminating all rows and
columns except the ones indexed by O and O,, respectively,
where O; C {1,...,n;} with n; € N for i € {1,2}. In order
to simplify the notation, we use C|( o,) := Cl({1,...11,0,)
and Cl(o,,) = Cl(0, {1....n,})- We denote the complement of
O by O:={1,...,n}\ 0. We use the notation {x(r)}
to denote the sequence x(0),...,x(T — 1), we drop the
sub(super)scripts whenever it is clear from the context.

A Linear Time Invariant (LTI) system is characterized by
the following equations:

x(t+1)=Ax(t)+Bu(t), y(t)=Cx(t)+Du(r), (1)

where u(t) € R™, x(t) € R" and y(t) € R are the input, state
and output variables, respectively, ¢ € Ny denotes time, A, B,
C and D are system matrices with appropriate dimensions.
The order of an LTI system is defined as the dimension of its
state space. A trajectory of the system consists of an input
sequence with its corresponding output sequence. For an LTI
system,

Ouc)=[CT ATCT AN’ @
D 0 0
CB D 0

MaBC.D) = , (3

CA" 2B CA" 3B D

are the observability and invertibility matrices, respectively,
where 7 is the order of the underlying system. In this paper,
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we often work with subsets of sensors and actuators. For
a subset of sensors K C {l,...,p}, we use the notation
Ok =0 | ) O denote the observability matrix of sensors
in the set K. For a set of actuators R C {1,...,m}, we
denote the invertibility matrix relating R to K by Az_k :=
J‘/(A~B(_‘R)7C(K‘_)7D(K‘R))' For x € R", we define its support set as
the set of indices of its non-zero components, denoted by
supp(x). Similarity we define the support of the sequence as

supp({x(t)}) := Uy supp(x(t)).

B. System and Attack model

This work is concerned with the problem of attack de-
tection and identification of LTI systems. We consider the
scenario in which the sensors and actuators are both suscep-
tible to attacks. The ultimate goal is to reconstruct the state
despite these attacks.

The system S, is described by the following equations:

x(t+1) = Ax(t) + Bus(1),
ys(t) = Cx(t) 4+ Dus(t). 4)
In this set up, the adversary can attack sensors and/or
actuators. We model these attacks by additive terms and by
imposing a sparsity constraint on them, i.e.,

{

where u(r) € R™ and y(r) € R? are the controller-designed
input and the observed output, respectively, and w(t) € R™
and a(t) € R” are signals injected by the malicious agent
into the actuators and sensors. We use the subscript S for
signals that directly come from/to the system. The controller
can only observe y(r) and compute the input u(r).

When the adversary attacks a sensors (actuator) it can
changes its measurement (input) to any arbitrary value, we
model this attack by an additive term in (5) without any
restriction (statistical or otherwise). The only limitation that
we impose on the power of the malicious agent is the number
of sensors and actuators under attack. We assume that an
upper bound on the number of attacked sensors and actuators
is given by a pair (s,r). Therefore, the malicious agent can
attack a subset of sensors and actuators denoted by K C
{1,...,p} and R C {1,...,m}, respectively, with |K| <s and
|R| < r, such that supp({w(¢)}) C R and supp({a(t)}) C K.
Note that these sets are not known in the controller side
and only upper bounds on their cardinality are given. Once
the adversary chooses these sets, other sensors and actuators
remain unattacked.

Assumption 1: The number of sensors and actuators under
attack is bounded by s and r, respectively.

Problem statement: For the linear system (4) under the at-
tack model (5), we seek solutions to the following problems:

=u(t) +w(t),
=ys(1) +al(),

us(t)

5
(1) ®)

« Under which conditions the state reconstruction is pos-
sible despite attacks on both sensors and actuators?
« How can we design such an efficient estimator?



III. NECESSARY AND SUFFICIENT CONDITIONS FOR
SECURE STATE ESTIMATION

In this section, we look at this problem from a theoretical
perspective. We seek conditions on the underlying system
under which the state estimation (possibly with delay) is
possible despite attacks on both sensors and actuators.

In some applications, the state of the system is to be
estimated but not all the inputs are available or known. To
address this problem, the notion of “strong observability”
has been introduced in the literature. For strongly observable
systems, one can still estimate the state of the system without
the knowledge of inputs. The following definition formalizes
this concept.

Definition 1 (Strong observability): The system described
by the equations (1) is called strongly observable if for any
initial state x(0) and any input sequence u(0),u(1),... there
exists an integer L such that x(0) can be uniquely recovered
from y(0),y(1),...,y(L).

Note that L is always upper-bounded by the order of the
system. The following lemma gives a different characteristic
of strong observable systems.

Lemma 1: System described by the equations (1) is
strongly observable if and only if y(r) = 0 for r € Ny implies
that x(0) = 0.

Proof: The proof is given in [31]. [ ]

In analogy to sparse observability [16], we define the
notion of (s,r)-sparse strong observability as follows:

Definition 2 ((s,r)-sparse strong observability): System
(4) is (s,r)-sparse strongly observable if for any
r,c{l,...,p} and T, C {1,...,m} with |Ty| <s and
IT,| < r, the system (AvB(.,F,,)7C(F}..)aD(F},Fu)) is strongly
observable.

Note that in Definition 2, the value of s and r are
upper bounded by the number of sensors and actuators,
respectively. This modified notion of strong observability
is the key for formalizing redundancy across sensors. We
show that a necessary and sufficient condition for secure
state estimation can be stated using this property. Note that
(s,0)-sparse strong observability is equivalent to the notion
of s-sparse observability that was introduced before in the
literature [16]. The following theorem is the main theoretical
result in this paper.

Theorem 1: Let the number of attacked sensors and actu-
ators be bounded by s and r, respectively. Under this attack
model (5), the state can be reconstructed (possibly with
delay) if and only if the underlying system S, is (2s,2r)-
sparse strongly observable.

Remark 1: It is worth mentioning that the maximum
number of attacked sensors, s, cannot be greater than LgJ
and it is an inherent limitation of LTI systems with p sensors
[16]. However the maximum number of attacked actuators
is not inherently restricted by | % | and can take values up to
m, depending on the specific system under the consideration.

Proof: The proof is given in [31]. [ ]
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IV. AN SMT-BASED ESTIMATOR

In this section, we propose an algorithm that estimates
the state despite attacks on actuators and sensors, followed
by designing an estimator. We work with batches of data in
order to estimate the state. We use capital letters to represent
these batches,

Y'(t) = [y(t—n+1)T
W"(t) = [wt—n+1)T

NOUEE ©6)
w(n)™]" . (7

Whenever 7 is the order of the underlying system, we may
drop the superscript for ease of notation. For a subset of sen-
sors (actuators), denoted by K C {1,...,p} (RC{1,...,m}),
we use the notation Y"|g(r) (W"|g(z)) for the batches of
length n that only consists of sensors (actuators) in the set K
(R). Based on the attack model (5), the input to the system
is decomposed into two additive terms, controller-designed
input u(r) and the adversarial input w(¢). The underlying
system (4) is linear and therefore we can easily exclude the
effect of the controller-designed input from the output by
subtracting its effect. Hence, without loss of generality we
assume that the true u(t) is zero. The proposed algorithm is
based on the following proposition.

Proposition 1: Suppose that the underlying system is
(2s,2r)-sparse strongly observable, and the number of at-
tacked sensors and actuators are bounded by s and r, respec-
tively. Given any subset of sensors and actuators denoted by
K and R with |[K| > p—s and |R| < r, the first statement
below implies the second:

1) There exist U € R"®l and £ € R" such that

Y|k (t) = Oxi+ NrkU. (8)

2) The estimated state £, is equal to the actual state of the
system at time t —n+ 1, x(t —n+ 1), where n is the
order of the underlying system.

Remark 2: The underlying system is (2s,2r)-sparse
strongly observable therefore (A,B( g),C(x,);Dk.r)) is
strongly observable. If (8) has a solution, then £ would be
the unique solution for x (see section III-B of [32]).

Proof: The proof is given in [31]. [ ]

The main algorithm in this paper is based on this propo-
sition. We search for a set of sensors and actuators that
satisfies (8), i.e., we check if there exist U and £ that
make the equality (8) hold. For each sensor (actuator), we
assign a binary variable b; € B (¢; € B) that indicates if the
corresponding sensor (actuator) is under attack or not, i.e.,
b; =1 (¢; = 1) if the i sensor (actuator) is under attack.
This task is combinatorial in nature and in order to efficiently
decide which set of sensors and actuators satisfies the test,
we construct a detection algorithm using lazy SMT paradigm
[33].

A. Architecture

As in IMHOTEP-SMT [20], our solver consists of two
blocks that interact with each other, a SAT solver and a
Theory solver. The former reasons about the combination
of Boolean and pseudo-Boolean constraints and produces



a feasible instance of b € B? and ¢ € B™, based on the
current status of the SAT solver. The initial pseudo-Boolean
constraint only bounds the number of attacked sensors and
actuators, i.e.,

m

b; §s)/\(;c,' <r).

Mm

CI)B = (

12

(©))

Il
—

The theory solver checks the equality (8) for K := supp(b)
and R := supp(c). If the equality is satisfied, then the
algorithm terminates and returns the (delayed) estimate of
the state. Otherwise, the Theory solver outputs UNSAT
and generates a reason for the conflict, a certificate, or a
counterexample that is denoted by ®.e. This counterexam-
ple encodes the inconsistency among the chosen attack-free
actuators and sensors. The following always constitutes a

naive certificate.
Z b; + Z Cj >1.
i€supp(b) j€supp(d)

(10)

q)naive—cert =

In the rest of this section, we show how we can build smaller
certificates and hence improve the run time. On the next
iteration, the SAT solver updates the constraint by conjoining
Deert to Pp, and generates another feasible assignment for
b and c. This procedure is repeated until the theory solver
returns SAT as illustrated in Algorithm 1.

Algorithm 1: Pseudo-code of the proposed algorithm.
input : A,B,C,D, Y (output), s,r ;
output: (x,b,c) ;
status < UNSAT ;
Deerr +— True ;
<I>B < ( Z

bi < s) \(
ie{ i
while status == UNSAT do
Dp + Dp A\ Deerts
(b,c) < SAT-solver(Pp) ;
(status, x) < T-solver.check(supp(b),supp(c));
Do + T-solver.certificate(supp(b), supp(c));

end
return (x,b,c)

w

R =R -EEE - L

Note that Proposition 1 implies that SAT solver eventually
produces an assignment that satisfies the test and therefore
Algorithm 1 always terminates. The size of the certificate
plays an important role in the overall execution time of
the algorithm. In the rest of this section, we focus on
constructing shorter counterexamples.

B. Shortening the SAT certificate

In this section, we improve the efficiency of Algorithm
1 by constructing a shorter certificate. As it was discussed
before, the naive certificate contains at least p+m—s—r
of assigned boolean variables. This certificate only excludes
the current assignment of b and ¢ from the search space
of the SAT solver, however, by exploiting the structure
of the underlying system, we show that we can further
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Algorithm 2: T-solver.check

1 Solve: (x,U) = argmin,,||Y |x — Okx— Nk U|| ;
if ||Y|K — ﬁ](X*JﬂgHKUH == 0 then
‘ status = SAT ;
else
| status = UNSAT ;
end

2
3
4
5
6
7 return (status,x)

decrease the size of the certificate and therefore prune the
search space more efficiently. In order to generate a shorter
certificate, we look for a subset of sensors and actuators
that cannot be all attack-free. One of the main results of
this paper is to show that we can always find a shorter
conflicting subset of sensors and actuators. In this paper,
we propose two different methods for generating shorter
certificates. The first method guarantees a counterexample
with a size of at most p+m—2s—2r+2, we explain this
method in detail and give a formal proof of the existence of
such shorter certificate. The second approach generates two
shorter certificates at each iteration.

Let us assume that the SAT solver hypothesized K and R
as the set of attack-free sensors and under-attack actuators,
respectively. We aim to shorten the size of the counterexam-
ple, i.e., we look for a Kiemp € K and Riemp 2 R that would
not satisfy the equality (8). For the first method, we do this
in two steps. In the first step, we increase the size of con-
flicting (supposedly under attack) actuators and afterwards
we decrease the size of the supposedly safe sensors. We
begin by arbitrarily adding actuators to R to get a subset of
size max(m,2r) denoted by Riemp. If T-solver.check(K, Riemp)
returns UNSAT, we pick Reemp as the augmented set of
conflicting actuators. Otherwise, we search for an actuator
J € Riemp \ R such that T-solver.check(K,Riemp \ {j}) returns
UNSAT. The following lemma guarantees existence of such
an actuator.

Lemma 2: Suppose that the system S is (2s,2r)-sparse
strongly observable, and the number of attacked sensors and
actuators are bounded by s and r, respectively. Pick any
subset of sensors and actuators denoted by K and R with
|K| > p—s and |R| < r, that do not satisfy the equality (8).
Given any subset of at most max{(2r,m)} actuators denoted
by Riemp 2 R, one of the following is true:

1) T-solver.check(K, Riemp) returns UNSAT,

2) There exists a j € Remp \ R such that T-
solver.check(K, Riemp \ {j}) returns UNSAT.
Proof: The proof is given in [31]. [ ]

Let us denote the new set of actuators by R which consists
of at least 2r — 1 actuators. At the second step, we shrink the
set of conflicting sensors in order to further shorten the size
of the counterexample, let us denoted an arbitrary subset of
K of size p—2s by Kiemp. Similar to Lemma 2, the following
lemma shows we can reduce the size of conflicting sensors
at least by s — 1.

Lemma 3: Suppose that the system S is (2s,2r)-sparse



Algorithm 3: T-solver.certificate 1

input : K,R ;
output: @ ;
step 1: Conduct a linear search in the actuator set ;
pick a set of size max(m,2r): Riemp 2 R ;
status <— SAT, j < 0 ;
while status == SAT do
R Remp\ {j} 5 ]
(status,x) <— T-Solver.check(K,R) ;
pick another actuator index j € Riemp \R;
end
step 2: Conduct a linear search in the sensor set ;
pick a set of size p —2s: Kiemp €K ;
status <— SAT,i <+ 0 ;
while status == SAT do
K + Kiemp U{i} ; o
(status,x) <— T-Solver.check(K,R) ;
pick another sensor index i € K\ Kiemp ;
end
q)]

cert

o NN AR W N -

e e T =
N R W N =D

— Ybit+ Y21,
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strongly observable, and the number of attacked sensors and
actuators are bounded by s and r, respectively. Pick any
subset of sensors and actuators denoted by K and R with
|K| > p—s and |R| < 2r, that do not satisfy the equality
(8). Given any subset of at most p — 2s sensors denoted by
Kiemp C K, one of the following is true:

1) T-solver.check(Kiemp, R) returns UNSAT,

2) There exists a i € K \ Kemp such that
T-solver.check(Kiemp U {i },R) returns UNSAT.
Proof: The proof is given in [31]. [ ]

We denote this smaller set of conflicting sensors by K.
Lemma 2 and 3 give formal guarantees of the existence of
shorter certificates which hold no matter how the subsets
of sensors and actuators are chosen. In practice, we choose
these subsets based on heuristics that have for objective a
decrease in the overall algorithms running time. We assign
slack variables to sensors and actuators similarly to [20] and
sort them based on the structure of the system. The summary
of the above procedure of shortening certificates is illustrated
in Algorithm 3.

As it was noted before, we propose two different ap-
proaches for shortening the counterexample and therefore
improving the running time. The second method generates
two certificates by reducing the size of “supposedly” safe
sensors and actuators separately. Therefore the theory solver
produces two counterexamples at each iteration. Suppose that
the SAT solver hypothesized K and R as the set of attack-free
sensors and under-attack actuators. In the first step, the theory
solver looks for a larger subset of actuators R O R for which
T-solver.check(K,R) returns UNSAT, Lemma 2 guarantees
the existence of such set. The first counterexample consists
of sensors in K and actuators in R. The second certificate
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Fig. 1. Number of iterations in Algorithm 1 using ® . .1 and ®
versus the number of sensors (p) and actuators (m). The dotted lines are
the theoretical upper-bounds for the number of iterations in the brute force
approach.

is constructed by reducing the size of sensors and keeping
the same set of “supposedly” under-attack actuators, K. We
denote the conjunction of these certificates as ®2,,.

C. Simulation Results

We implemented our SMT-based estimator in MATLAB
while interfacing with the SAT solver SAT4J [34]. In this
subsection, we assess the performance of our algorithm by
using both the certificates. We randomly generate systems
with a fixed state dimension (n = 20) and increase the number
of sensors and actuators. In each experiment, twenty percent
of sensors and actuators are under adversarial attacks, and we
randomly generate the support set for the adversarial signals.
All the systems under experiment satisfy a suitable sparse
strong observability condition. Figures 1 and 2 report the
results of the simulations. All the experiments run on an Intel
Core i5 2.7GHz processor with 16GB of RAM. We verify
the run-time improvement by using the shorter certificates,
@), and @2, compared to the theoretical upper-bound of
the brute-force approach in Figure 1. For instance, consider
the scenario with p = 24 and m = 10 in Figures 1 and 2.
In the brute-force approach, we require to check all (244)
x (%) ~4.8%10° different combinations of sensors and
actuators, however, by exploiting either ®!., or @2, we
observe a substantial improvement. It is worth mentioning
the @2, gives better performance than &, for this set of
experiments.

V. CONCLUSION

In this paper, we considered the problem of secure state
estimation when sensors and/or actuators are under ad-
versarial attacks. In this set-up, there is no restriction on
how the adversary manipulates sensors and actuators. By
introducing the notion of “sparse strong observability”, we
derived necessary and sufficient conditions under which the
state estimation is possible given bounds on the number of
attacked sensors and actuators. Furthermore, we supported
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theory by developing an SMT-based estimator that re-

construct the state, which has improvements in the execution
time by harnessing the complexity of secure state estimation.
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